Analysis of Photocatalytic Degradation of Phenol by Zinc Oxide Using Response Surface Methodology

响应面法分析氧化锌光催化降解苯酚

阅读:2
作者:Meliha Seloglu, Ramazan Orhan, Veyis Selen, Gülbeyi Dursun

Abstract

In this study, the photocatalytic degradation of phenol, which is commonly found in industrial wastewater at high rates, was investigated using a zinc oxide (ZnO) catalyst. It is thought that our findings will contribute to the removal of phenol in industrial wastewater. The experimental study was conducted in a batch-type air-fed cylindrical photocatalytic reactor, and a central composite design (CCD) was chosen and analyzed using response surface methodology (RSM). The study aimed to explore the effects of initial phenol concentration, catalyst concentration, airflow rate, and degradation time on the photocatalytic degradation of phenol and the removal efficiency of total organic carbon (TOC). A quadratic regression model was developed to establish the relationship between phenol degradation, TOC removal effectiveness, and the four factors mentioned. The validity of the model was assessed through an analysis of variance (ANOVA). A good agreement was observed between the model results and the experimental data. As a result of the experiments carried out under optimized conditions, the degradation percentage of phenol was found to be 77.15 %, and the degradation percentage of TOC was 59.87 %. Additionally, pseudo-first-order kinetics were used in the photocatalytic degradation of phenol.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。