Docosahexaenoic acid enhances amphiregulin-mediated bronchial epithelial cell repair processes following organic dust exposure

二十二碳六烯酸增强有机粉尘暴露后双调蛋白介导的支气管上皮细胞修复过程

阅读:2
作者:Tara M Nordgren, Art J Heires, Kristina L Bailey, Dawn M Katafiasz, Myron L Toews, Christopher S Wichman, Debra J Romberger

Abstract

Injurious dust exposures in the agricultural workplace involve the release of inflammatory mediators and activation of epidermal growth factor receptor (EGFR) in the respiratory epithelium. Amphiregulin (AREG), an EGFR ligand, mediates tissue repair and wound healing in the lung epithelium. Omega-3 fatty acids such as docosahexaenoic acid (DHA) are also known modulators of repair and resolution of inflammatory injury. This study investigated how AREG, DHA, and EGFR modulate lung repair processes following dust-induced injury. Primary human bronchial epithelial (BEC) and BEAS-2B cells were treated with an aqueous extract of swine confinement facility dust (DE) in the presence of DHA and AREG or EGFR inhibitors. Mice were exposed to DE intranasally with or without EGFR inhibition and DHA. Using a decellularized lung scaffolding tissue repair model, BEC recolonization of human lung scaffolds was analyzed in the context of DE, DHA, and AREG treatments. Through these investigations, we identified an important role for AREG in mediating BEC repair processes. DE-induced AREG release from BEC, and DHA treatment following DE exposure, enhanced this release. Both DHA and AREG also enhanced BEC repair capacities and rescued DE-induced recellularization deficits. In vivo, DHA treatment enhanced AREG production following DE exposure, whereas EGFR inhibitor-treated mice exhibited reduced AREG in their lung homogenates. These data indicate a role for AREG in the process of tissue repair after inflammatory lung injury caused by environmental dust exposure and implicate a role for DHA in regulating AREG-mediated repair signaling in BEC.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。