Hypoxia-regulated secretion of IL-12 enhances antitumor activity and safety of CD19 CAR-T cells in the treatment of DLBCL

缺氧调节 IL-12 分泌增强 CD19 CAR-T 细胞在治疗 DLBCL 中的抗肿瘤活性和安全性

阅读:12
作者:Wenping Zhou, Jinxin Miao, Zhenguo Cheng, Zhimin Wang, Jianyao Wang, Haoran Guo, Pengju Wang, Shuangshuang Lu, Lingling Si, Zhongxian Zhang, Louisa Chard Dunmall, Yanyan Liu, Nicholas R Lemoine, Yaohe Wang

Abstract

CD19-targeted chimeric antigen receptor-modified T (CD19 CAR-T) cell therapy has been demonstrated as one of the most promising therapeutic strategies for treating B cell malignancies. However, it has shown limited treatment efficacy for diffuse large B cell lymphoma (DLBCL). This is, in part, due to the tumor heterogeneity and the hostile tumor microenvironment. Human interleukin-12 (IL-12), as a potent antitumor cytokine, has delivered encouraging outcomes in preclinical studies of DLBCL. However, potentially lethal toxicity associated with systemic administration precludes its clinical application. Here, an armed CD19 CAR expressing hypoxia-regulated IL-12 was developed (CAR19/hIL12ODD). In this vector, IL-12 secretion was restricted to hypoxic microenvironments within the tumor site by fusion of IL-12 with the oxygen degradation domain (ODD) of HIF1α. In vitro, CAR19/hIL12ODD-T cells could only secrete bioactive IL-12 under hypoxic conditions, accompanied by enhanced proliferation, robust IFN-γ secretion, increased abundance of CD4+, and central memory T cell phenotype. In vivo, adoptive transfer of CAR19/hIL12ODD-T cells significantly enhanced regression of large, established DLBCL xenografts in a novel immunodeficient Syrian hamster model. Notably, this targeted and controlled IL-12 treatment was without toxicity in this model. Taken together, our results suggest that armed CD19 CARs with hypoxia-controlled IL-12 (CAR19/hIL12ODD) might be a promising and safer approach for treating DLBCL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。