Synthesis and evaluation of perfluorooctylbromide nanoparticles modified with a folate receptor for targeting ovarian cancer: in vitro and in vivo experiments

叶酸受体修饰全氟辛基溴化纳米粒子的合成及对卵巢癌靶向治疗的评价:体内外实验

阅读:2
作者:Xinjie Liu, Jiannong Zhao, Dajing Guo, Zhigang Wang, Weixiang Song, Weijuan Chen, Jun Zhou

Background

Epithelial ovarian cancer is the leading cause of death among gynecologic malignancies. However, detecting ovarian cancer at an early stage remains challenging. In this work, we aimed to synthesize a folate-receptor-targeting perfluorooctylbromide nanoparticle (FR-TPNP) as a targeted computed tomography (CT) contrast agent for the early detection of ovarian cancer.

Conclusion

The synthesized FR-TPNP emulsion was an effective CT contrast agent with highly efficient targeting ability and a long circulation time, thus representing a potential strategy for the earlier detection of ovarian cancer.

Methods

Perfluorooctylbromide (PFOB) was encapsulated in Poly (lactic-co-glycolic acid) (PLGA) by a two-step emulsion technique to construct the nanoparticles. Folate-poly (ethylene glycol)-carboxylic acid (Fol-PEG-COOH) was introduced to modify the surface of the nanoparticles through attachment to the PLGA. The effects of different volume ratios of PFOB to PLGA on the characteristics of the FR-TPNP emulsions were compared. The size distribution and potential of the FR-TPNPs were assessed with a laser particle size analyzer system. The in vitro targeting ability of the FR-TPNPs was observed with a confocal laser scanning microscope (CLSM), and the in vivo transportation of the FR-TPNPs was evaluated with CT.

Results

The sizes of the FR-TPNP emulsion with different volume ratios varied from 302.67 ± 27.83 nm to 563.68 ± 47.29 nm, and the mean CT value ranged from 233 ± 20.59 HU to 587.66 ± 159.51 HU. Both the size and mean CT value increased with the volume ratio. The FR-TPNPs showed greater cell affinity and targeting efficiency to SKOV3 cells than the control group and folic acid interference group in vitro, as observed by CLSM. A significant CT enhancement of ovarian cancer xenografts in the targeted group of a nude mice model was observed 2 h post-injection; it increased to a peak at 12 h and had a duration of 48 h. The mean CT value of the tumor in the targeted group was considerably higher than those in the non-targeted and other groups 6 h post-injection.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。