Osteogenic differentiation of CD271(+) cells from rabbit bone marrow cultured on three phase PCL/TZ-HA bioactive scaffolds: comparative study with mesenchymal stem cells (MSCs)

在三相 PCL/TZ-HA 生物活性支架上培养的兔骨髓 CD271(+) 细胞的成骨分化:与间充质干细胞 (MSCs) 的比较研究

阅读:2
作者:Alessia Colosimo, Cristina Rofani, Elisa Ciraci, Aurelio Salerno, Maria Oliviero, Ernesto Di Maio, Salvatore Iannace, Paolo A Netti, Francesco Velardi, Anna C Berardi

Abstract

Tissue engineering is one of the major challenges of orthopedics and trauma surgery for bone regeneration. Biomaterials filled with mesenchymal stem cells (MSCs) are considered the most promising approach in bone tissue engineering. Furthermore, our previous study showed that the multi-phase poly [ε-caprolactone]/thermoplastic zein-hydroxyapatite (PCL/TZ-HA) biomaterials improved rabbit (r) MSCs adhesion and osteoblast differentiation, thus demonstrating high potential of this bioengineered scaffold for bone regeneration. In the recent past, CD271 has been applied as a specific selective marker for the enrichment of MSCs from bone marrow (BM-MSCs). In the present study, we aimed at establishing whether CD271-based enrichment could be an efficient method for the selection of rBM-MSCs, displaying higher ability in osteogenic differentiation than non-selected rBM-MSCs in an in vitro system. CD271(+) cells were isolated from rabbit bone marrow and were compared with rMSCs in their proliferation rate and osteogenic differentiation capability. Furthermore, rCD271(+) cells were tested in their ability to adhere, proliferate and differentiate into osteogenic lineage, while growing on PCL/TZ-HA scaffolds, in comparison to rMSCs. Our result demonstrate that rCD271(+) cells were able to adhere, proliferate and differentiate into osteoblasts when cultured on PCL/TZ-HA scaffolds in significantly higher levels as compared to rMSCs. Based on these findings, CD271 marker might serve as an optimal alternative MSCs selection method for the potential preclinical and clinical application of these cells in bone tissue regeneration.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。