SGK1-Mediated Vascular Smooth Muscle Cell Phenotypic Transformation Promotes Thoracic Aortic Dissection Progression

SGK1介导的血管平滑肌细胞表型转化促进胸主动脉夹层进展

阅读:1
作者:Shuai Leng, Haijie Li, Pengfei Zhang, Zhiqiao Dang, Baowei Shao, Shishan Xue, Yansong Ning, Xilong Teng, Leilei Zhang, Honglu Wang, Na Li, Fengquan Zhang, Wenqian Yu

Background

The occurrence of thoracic aortic dissection (TAD) is closely related to the transformation of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. The role of SGK1 (serum- and glucocorticoid-regulated kinase 1) in VSMC phenotypic transformation and TAD occurrence is unclear.

Conclusions

These findings highlight the key role of SGK1 in the pathogenesis of TAD. A lack of SGK1 inhibits VSMC phenotypic transformation by regulating the SIRT6-MMP9 axis, providing insights into potential epigenetic strategies for TAD treatment.

Methods

Four-week-old male Sgk1F/F (Sgk1 floxed) and Sgk1F/F;TaglnCre (smooth muscle cell-specific Sgk1 knockout) mice were administered β-aminopropionitrile monofumarate for 4 weeks to model TAD. The SGK1 inhibitor GSK650394 was administered daily via intraperitoneal injection to treat the mouse model of TAD. Immunopurification and mass spectrometry were used to identify proteins that interact with SGK1. Immunoprecipitation, immunofluorescence colocalization, and GST (glutathione S-transferase) pull-down were used to detect molecular interactions between SGK1 and SIRT6 (sirtuin 6). RNA-sequencing analysis was performed to evaluate changes in the SIRT6 transcriptome. Quantitative chromatin immunoprecipitation was used to determine the target genes regulated by SIRT6. Functional experiments were also conducted to investigate the role of SGK1-SIRT6-MMP9 (matrix metalloproteinase 9) in VSMC phenotypic transformation. The effect of SGK1 regulation on target genes was evaluated in human and mouse TAD samples.

Results

Sgk1F/F;TaglnCre or pharmacological blockade of Sgk1 inhibited the formation and rupture of β-aminopropionitrile monofumarate-induced TADs in mice and reduced the degradation of the ECM (extracellular matrix) in vessels. Mechanistically, SGK1 promoted the ubiquitination and degradation of SIRT6 by phosphorylating SIRT6 at Ser338, thereby reducing the expression of the SIRT6 protein. Furthermore, SIRT6 transcriptionally inhibits the expression of MMP9 through epigenetic modification, forming the SGK1-SIRT6-MMP9 regulatory axis, which participates in the ECM signaling pathway. Additionally, our data showed that the lack of SGK1-mediated inhibition of ECM degradation and VSMC phenotypic transformation is partially dependent on the regulatory effect of SIRT6-MMP9. Conclusions: These findings highlight the key role of SGK1 in the pathogenesis of TAD. A lack of SGK1 inhibits VSMC phenotypic transformation by regulating the SIRT6-MMP9 axis, providing insights into potential epigenetic strategies for TAD treatment.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。