Molecular network mechanism of Shexiang Huayu Xingnao granules in treating intracerebral hemorrhage

麝香化瘀醒脑颗粒治疗脑出血的分子网络机制

阅读:8
作者:Ke-Qian Liu, Xue Bai, Ji-Lin Chen, Guo-Jiao Chen, Muhammad Ameen Jamal, Yu-Qi He

Abstract

We aim to explore the pharmacological efficacy and molecular network mechanism of Shexiang Huayu Xingnao granules (SX granules) in the treatment of intracerebral hemorrhage (ICH) based on experiments and network pharmacology. After the ICH model establishment, the behavioral functions of rats were assessed by the modified neurological severity score (mNSS), the wire suspension test, and the rotarod test. Brain histomorphological changes were observed using 2,3,5-triphenyl tetrazolium chloride (TTC), hematoxylin-eosin (HE), Nissl, and TdT-mediated dUTP nick end labeling (TUNEL) combined with neuronal nuclear (NEUN) immunofluorescence staining. The cross-targets of SX granules and ICH were obtained using network pharmacology, gene ontology (GO) enrichment analysis, and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway analysis were performed. Then, the obtained Hub genes were verified using real-time quantitative polymerase chain reaction (RT-qPCR). The mNSS score was reduced and the duration to remain wire suspended increased in the SX group. In the morphological experiment, SX granules reduced brain tissue damage, neuronal apoptosis, and the number of astrocytes in the ICH rats. Moreover, 607 targets of drug-disease intersection were obtained by network pharmacology, and 10 Hub genes were found. SX granules regulated the expression of HRAS, MAPK3, and STAT3 in ICH condition. In conclusion, SX granules improved behavioral dysfunction, abnormal alterations in brain tissue, and cell morphology in ICH rats, and potential molecular mechanism was linked with the expression of multiple genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。