The in-silico study of the structural changes in the Arthrobacter globiformis choline oxidase induced by high temperature

高温诱导球形节杆菌胆碱氧化酶结构变化的计算机模拟研究

阅读:3
作者:Sonia Kaushik, Rashmi Rameshwari, Shilpa S Chapadgaonkar

Background

Choline oxidase, a flavoprotein, is an enzyme that catalyzes the reaction which converts choline into glycine betaine. Choline oxidase started its journey way back in 1933. However, the impact of the high temperature on its structure has not been explored despite the long history and availability of its crystal structure. Both choline oxidase and its product, glycine betaine, have enormous applications spanning across multiple industries. Understanding how the 3D structure of the enzyme will change with the temperature change can open new ways to make it more stable and useful for industry. Process: This research paper presents the in-silico study and analysis of the structural changes of A. globiformis choline oxidase at temperatures from 25 °C to 60 °C. A step-wise process is depicted in Fig. 1.

Conclusion

Molecular dynamics studies suggest that an increase in temperature has a significant impact on the extended Flavin Adenine Dinucleotide (FAD) binding region. These changes interfere with the entry of substrate to the active site of the enzyme and make the enzyme inactive.

Results

Multiple sequence alignment (MSA) of 11 choline oxidase sequences from different bacteria vs Arthrobacter globiformis choline oxidase showed that active site residues are highly conserved. The available crystal structure of A. globiformis choline oxidase with cofactor Flavin Adenine Dinucleotide (FAD) in the dimeric state (PDB ID: 4MJW)1 was considered for molecular dynamics simulations. A simulated annealing option was used to gradually increase the temperature of the system from 25 °C to 60 °C. Analysis of the conserved residues, as well as residues involved in Flavin Adenine Dinucleotide (FAD) binding, substrate binding, substate gating, and dimer formationwas done. At high temperatures, the formation of the inter-chain salt bridge between Arg50 and Glu63 was a significant observation near the active site of choline oxidase.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。