Tetra methyl bisphenol F: another potential obesogen

四甲基双酚 F:另一种潜在的肥胖因素

阅读:2
作者:Misha Singh, Jennifer Crosthwait, Alexander Sorisky, Ella Atlas

Conclusions

Of the BPA analogues tested, BPF was most similar to BPA in its effects, while TMBPF was most adipogenic. In addition, TMBPF is likely a PPARγ agonist, it is likely an obesogenic chemical and may be a metabolic disruptor.

Methods

The adipogenic effects of Tetra Methyl Bisphenol F (TMBPF), Bisphenol F (BPF), Bisphenol AP (BPAP), and fluorine-9-bisphenol (BHPF) were evaluated in murine 3T3-L1 cells. The cells were treated with BPA and its analogues at concentrations from 0.01 µM to 20 µM, throughout differentiation, in the absence of Dexamethasone (Dex). Lipid accumulation, mRNA and protein levels of adipogenic markers was assessed.

Results

We found that TMBPF, BPF and BPA increased 3T3-L1 lipid accumulation and the expression levels of adipogenic markers lipoprotein lipase (Lpl), fatty acid binding protein 4 (Fabp4) and perilipin (Plin) (1-20 µM; p < 0.05), whereas BHPF and BPAP had no effect in this model. Further, TMBPF induced adipogenesis to a greater extent than all the other chemicals including BPA (1-20 µM; p < 0.05). The effect mediated by TMBPF on expression levels of Fabp4, but not Plin, is likely mediated via peroxisome proliferator-activated receptor (PPAR) γ activation. Conclusions: Of the BPA analogues tested, BPF was most similar to BPA in its effects, while TMBPF was most adipogenic. In addition, TMBPF is likely a PPARγ agonist, it is likely an obesogenic chemical and may be a metabolic disruptor.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。