Molecular mechanisms driving the interactions between platelet and gastric cancer cells during peritoneal dissemination

腹膜播散过程中血小板与胃癌细胞相互作用的分子机制

阅读:2
作者:Takashi Nakayama, Ryo Saito, Shinji Furuya, Yudai Higuchi, Koichi Matsuoka, Kazunori Takahashi, Suguru Maruyama, Katsutoshi Shoda, Koichi Takiguchi, Kensuke Shiraishi, Yoshihiko Kawaguchi, Hidetake Amemiya, Hiromichi Kawaida, Nagaharu Tsukiji, Toshiaki Shirai, Katsue Suzuki-Inoue, Daisuke Ichikawa

Abstract

Platelets (PLTs) facilitate tumor progression and the spread of metastasis. They also interact with cancer cells in various cancer types. Furthermore, PLTs form complexes with gastric cancer (GC) cells via direct contact and promote their malignant behaviors. The objective of the present study was to explore the molecular mechanisms driving these interactions and to evaluate the potential for preventing peritoneal dissemination by inhibiting PLT activation in GC cells. The present study examined the roles of PLT activation pathways in the increased malignancy of GC cells facilitated by PLT-cancer cells. Transforming growth factor-β receptor kinase inhibitor (TRKI), Src family kinase inhibitor (PP2) and Syk inhibitor (R406) were used to identify the molecules influencing these interactions. Their therapeutic effects were verified via cell experiments and validated using a mouse GC peritoneal dissemination model. Notably, only the PLT activation pathway-related inhibitors TRKI and PP2, but not R406, inhibited the PLT-enhanced migration and invasion of GC cells. In vivo analyses revealed that PLT-enhanced peritoneal dissemination was suppressed by PP2. Overall, the present study revealed the important role of the Srk family in the interactions between PLTs and GC cells, suggesting kinase inhibitors as promising therapeutic agents to mitigate the progression of peritoneal metastasis in patients with GC.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。