Exploring vestibulocerebellum-vestibular nuclei-spinal trigeminal nucleus causals communication and TRPV2 ion channel in a mouse model of vestibular migraine

探索前庭性偏头痛小鼠模型中的前庭小脑-前庭核-脊髓三叉神经核因果通讯和 TRPV2 离子通道

阅读:4
作者:Qingling Zhai #, Qihui Chen #, Ning Zhang, Hongyan Li, Qijun Yu, Yonghui Pan

Background

Vestibular migraine (VM) is a disorder characterized by recurrent episodes of dizziness or vertigo and is often accompanied by headache. The mechanisms underlying vestibular dysfunction and pain in VM remain unclear.

Conclusions

This study preliminarily explored VbC-VN-Sp5c communication and identified TRPV2 ion channels in microglia as key players in neuron-glia crosstalk in VM. These findings provide new insights into the mechanisms underlying vestibular migraine and suggest potential therapeutic targets.

Methods

Chronic migraine (CM) and VM models were induced by NTG and kainic acid, respectively. Behavioral assessments were conducted to evaluate vestibular dysfunction and pain in the VM and CM models. Transmission electron microscopy (TEM) was used to examine peripheral receptor impairment. Immunofluorescence, including staining for Cellular Proto-oncogene (c-Fos), Neuronal Nuclei (NeuN), and calcitonin gene-related peptide (CGRP), identified activated brain regions such as the cortex, midbrain, and cerebellum. Multiplex immunohistochemistry and cholera toxin subunit B (CTB) tracing were performed to analyze nuclear heterogeneity and neural communication. Additionally, RNA sequencing (RNA-Seq) and Ionized calcium-binding adapter molecule 1 (IBA1) immunostaining were used to investigate ion channel expression in the spinal trigeminal nucleus caudalis (Sp5c).

Results

CM and VM-related behaviors, such as allodynia and balance disturbance, were successfully reproduced in mouse model. TEM revealed significant damage to peripheral sensory receptors, particularly in the trigeminal ganglion and cochlear cells. Distinct activation patterns of c-Fos and CGRP were observed in VMs and CMs. CTB tracing confirmed that signals are transmitted from the vestibulocerebellum (VbC) to the Sp5c via the vestibular nuclei (VN). Furthermore, RNA-Seq combined with coimmunostaining revealed an increased expression of transient receptor potential vanilloid 2 (TRPV2) ion channels in microglia within Sp5c, indicating their potential role in VM pathology. Conclusions: This study preliminarily explored VbC-VN-Sp5c communication and identified TRPV2 ion channels in microglia as key players in neuron-glia crosstalk in VM. These findings provide new insights into the mechanisms underlying vestibular migraine and suggest potential therapeutic targets.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。