Decompression Mechanism of Radish Seed in Prehypertension Rats through Integration of Transcriptomics and Metabolomics Methods

整合转录组学和代谢组学方法探究萝卜籽对高血压前期大鼠的减压机制

阅读:2
作者:Qiang Jia, Yuchen Qi, Hanbo Li, Hai Ding, Dongmei Qi, Yunlun Li

Abstract

Radish seed (RS), the dried ripe seed of Raphanus sativus L., is widely used in traditional Chinese medicine (TCM) to reduce blood pressure. However, the molecular and pharmacological mechanisms underlying its therapeutic effects are still unclear. In this study, we analyzed the effects of RS in a rat model of prehypertension and assessed the mechanistic basis by integrating transcriptomics and metabolomics. RS administration significantly reduced blood pressure in prehypertensive male Wistar rats, negatively regulated endothelin-1, increased nitric oxide levels, and reduced the exfoliation of endothelium cells. In vitro vascular ring experiments further confirmed the effects of RS on vascular endothelial cells. Furthermore, we identified 65 differentially expressed genes (DEGs; P adj < 0.05 and fold change (FC) > 2) and 52 metabolites (VIP > 1, P < 0.05 and FC ≥ 2 or ≤0.5) in the RS intervention group using RNA-seq and UPLC-MS/MS, respectively. A network of the DEGs and the metabolites was constructed,q which indicated that RS regulates purine metabolism, linoleic acid metabolism, arachidonic acid metabolism, circadian rhythm, and phosphatidylinositol signaling pathway, and its target genes are Pik3c2a, Hspa8, Dnaja1, Arntl, Ugt1a1, Dbp, Rasd1, and Aldh1a3. Thus, the antihypertensive effects of RS can be attributed to its ability to improve vascular endothelial dysfunction by targeting multiple genes and pathways. Our findings provide new insights into the pathological mechanisms underlying prehypertension, along with novel targets for the prevention and treatment of hypertension.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。