Establishment of primary and immortalized fibroblasts reveals resistance to cytotoxic agents and loss of necroptosis-inducing ability in long-lived Damaraland mole-rats

原代和永生化成纤维细胞的建立揭示了长寿达玛拉兰鼹鼠对细胞毒性药物的抵抗力和诱导坏死凋亡的能力的丧失

阅读:2
作者:Yusuke Suzuki, Kanta Yamaguchi, Kaitlyn N Lewis Hardell, Kurumi Ota, Taira Kamikado, Yoshimi Kawamura, Rochelle Buffenstein, Kaori Oka, Kyoko Miura

Abstract

The Damaraland mole-rat (DMR; Fukomys damarensis) is a long-lived (~ 20 years) Bathyergid rodent that diverged 26 million years ago from its close relative, the naked mole-rat (NMR). While the properties of NMR cultured fibroblasts have been extensively studied and have revealed several unusual features of this cancer-resistant, long-lived species, comparative DMR studies are extremely limited. We optimized conditions for successfully culturing primary DMR skin fibroblasts and also established immortalized DMR cells using simian virus 40 early region expression. Like NMRs, DMR fibroblasts are more resistant than mice to various cytotoxins including heavy metals, DNA-damaging agents, oxidative stressors, and proteasome inhibitors. DMR genome sequencing analyses revealed the presence of premature stop codons in the master regulator genes of necroptosis, an inflammatory programmed cell death-receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), although these mutations have different locations to those found in the NMR. DMR cells, like NMR cells, did not show significantly increased cell death in response to necroptosis induction. Our data suggest that both Bathyergid species require species-specific cell culture conditions for optimized growth, display similar resistance to cytotoxins, and show loss-of-function mutations abrogating the ability to employ necroptosis. These shared traits may contribute to their evolved adaptations to their subterranean lifestyle and prolonged longevity. These convergent insights and valuable resource may be pertinent to biomedical research.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。