Suppression of dopamine receptor 2 inhibits the formation of human prostate cancer PC‑3‑derived cancer stem cell‑like cells through AMPK inhibition

抑制多巴胺受体 2 可通过抑制 AMPK 来抑制人类前列腺癌 PC-3 衍生的癌症干细胞样细胞的形成

阅读:3
作者:Juyeon Park, Hee Jun Jang, Won Ki Jung, Da Yeon Kang, You Li Gong, Hee-Jeong Kim, Jong Soon Kang, Jeong Wook Yang, Youngjoo Byun, Song-Kyu Park

Abstract

Cancer stem cells (CSCs) contribute to the resistance of intractable prostate cancer, and dopamine receptor (DR)D2 antagonists exhibit anticancer activity against prostate cancer and CSCs. Human prostate cancer PC-3 cells were used to generate CSC-like cells, serving as a surrogate system to identify the specific DR subtype the inhibition of which significantly affects prostate-derived CSCs. Additionally, the present study aimed to determine the downstream signaling molecules of this DR subtype that exert more profound effects compared with other DR subtypes. The inhibitory effects of specific antagonists or small interfering (si)RNAs on DR subtypes were compared by analyzing morphological changes of cells, expression patterns of pluripotency markers, cell growth inhibitory activities and in vitro cell invasion. L-741,626, a specific DRD2 antagonist, induced morphological changes in PC-3-derived CSC-like cells, suppressed the expression of Oct4 (a pluripotency marker), and inhibited the growth of cells and tumors. The proliferation of heterozygous null PC-3 cells, generated using the CRISPR/Cas9 method, was slow, and their sphere-forming ability was substantially reduced, indicating a diminished capacity to produce CSCs. In addition, the phosphorylation of AMPK was suppressed by DRD2 siRNA and the heterozygous knockout of DRD2 in PC-3 cells, indicating that AMPK may be a putative downstream signaling molecule involved in the production and maintenance of PC-3-derived CSC-like cells. Specific inhibition or suppression of DRD2 caused PC-3-derived CSC-like cells to lose their properties and inhibited the formation of PC-3-derived CSC-like cells, followed by inhibition of the phosphorylation of AMPK, which is considered a putative downstream signaling molecule of DRD2. Further understanding of the mechanisms by which DRD2 regulates AMPK and the effects of AMPK inhibition on the properties of PC-3-derived CSC-like cells may provide valuable insights into the identification of molecular targets for treating intractable prostate cancer wherein AMPK is constitutively activated.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。