Non-invasive electron paramagnetic resonance imaging detects tumor redox imbalance induced by ferroptosis

非侵入性电子顺磁共振成像检测铁死亡引起的肿瘤氧化还原失衡

阅读:2
作者:Kazuhiro Kato, Hironobu Yasui, Hideo Sato-Akaba, Miho C Emoto, Hirotada G Fujii, Maciej M Kmiec, Periannan Kuppusamy, Masaki Nagane, Tadashi Yamashita, Osamu Inanami

Abstract

Targeting ferroptosis, cell death caused by the iron-dependent accumulation of lipid peroxides, and disruption of the redox balance are promising strategies in cancer therapy owing to the physiological characteristics of cancer cells. However, the detection of ferroptosis using in vivo imaging remains challenging. We previously reported that redox maps showing the reduction power per unit time of implanted tumor tissues via non-invasive redox imaging using a novel, compact, and portable electron paramagnetic resonance imaging (EPRI) device could be compared with tumor tissue sections. This study aimed to apply the EPRI technique to the in vivo detection of ferroptosis. Notably, redox maps reflecting changes in the redox status of tumors induced by the ferroptosis-inducing agent imidazole ketone erastin (IKE) were compared with the immunohistochemical images of 4-hydroxynonenal (4-HNE) in tumor tissue sections. Our comparison revealed a negative correlation between the reducing power of tumor tissue and the number of 4-HNE-positive cells. Furthermore, the control and IKE-treated groups exhibited significantly different distributions on the correlation map. Therefore, redox imaging using EPRI may contribute to the non-invasive detection of ferroptosis in vivo.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。