Similar, but not the same: multiomics comparison of human valve interstitial cells and osteoblast osteogenic differentiation expanded with an estimation of data-dependent and data-independent PASEF proteomics

相似但不相同:人类瓣膜间质细胞和成骨细胞成骨分化的多组学比较扩展,并估计了数据依赖和数据独立的 PASEF 蛋白质组学

阅读:3
作者:Arseniy Lobov, Polina Kuchur, Nadezhda Boyarskaya, Daria Perepletchikova, Ivan Taraskin, Andrei Ivashkin, Daria Kostina, Irina Khvorova, Vladimir Uspensky, Egor Repkin, Evgeny Denisov, Tatiana Gerashchenko, Rashid Tikhilov, Svetlana Bozhkova, Vitaly Karelkin, Chunli Wang, Kang Xu, Anna Malashicheva

Abstract

Osteogenic differentiation is crucial in normal bone formation and pathological calcification, such as calcific aortic valve disease (CAVD). Understanding the proteomic and transcriptomic landscapes underlying this differentiation can unveil potential therapeutic targets for CAVD. In this study, we employed RNA sequencing transcriptomics and proteomics on a timsTOF Pro platform to explore the multiomics profiles of valve interstitial cells (VICs) and osteoblasts during osteogenic differentiation. For proteomics, we utilized 3 data acquisition/analysis techniques: data-dependent acquisition (DDA)-parallel accumulation serial fragmentation (PASEF) and data-independent acquisition (DIA)-PASEF with a classic library-based (DIA) and machine learning-based library-free search (DIA-ML). Using RNA sequencing data as a biological reference, we compared these 3 analytical techniques in the context of actual biological experiments. We use this comprehensive dataset to reveal distinct proteomic and transcriptomic profiles between VICs and osteoblasts, highlighting specific biological processes in their osteogenic differentiation pathways. The study identified potential therapeutic targets specific for VICs osteogenic differentiation in CAVD, including the MAOA and ERK1/2 pathway. From a technical perspective, we found that DIA-based methods demonstrate even higher superiority against DDA for more sophisticated human primary cell cultures than it was shown before on HeLa samples. While the classic library-based DIA approach has proved to be a gold standard for shotgun proteomics research, the DIA-ML offers significant advantages with a relatively minor compromise in data reliability, making it the method of choice for routine proteomics.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。