Dietary bile acid supplementation improves intestinal integrity and survival in a murine model

膳食胆汁酸补充剂可改善小鼠模型的肠道完整性和存活率

阅读:2
作者:Erin E Perrone, Chen Chen, Shannon W Longshore, Oneybuchi Okezie, Brad W Warner, Chen-Chih Sun, Samuel M Alaish, Eric D Strauch

Conclusions

Dietary TDCA supplementation alleviates mucosal damage and improves survival after LPS-induced intestinal injury. Taurodeoxycholic acid is protective of the intestinal mucosa by increasing resistance to injury-induced apoptosis, stimulating enterocyte proliferation, and increasing villus length. Taurodeoxycholic acid supplementation also results in an increased survival benefit. Therefore, bile acid supplementation may potentially protect the intestine from injury or infection.

Methods

C57Bl6 mice were fed a liquid diet with or without 50-mg/(kg d) TDCA supplementation. After 6 days, the mice were injected with lipopolysaccharide (LPS) (10 mg/kg) to induce intestinal injury. Specimens were obtained 24 hours later and evaluated for intestinal apoptosis, crypt proliferation, and villus length. A separate cohort of animals was injected with LPS (25 mg/kg) and followed 7 days for survival.

Purpose

In vitro supplementation of the bile salt, taurodeoxycholic acid (TDCA), has been shown to stimulate proliferation and prevent intestinal apoptosis in IEC-6 cells. We hypothesize that addition of TDCA to a rodent liquid diet will be protective against induced intestinal injury.

Results

Mice whose diet was supplemented with TDCA had significantly increased survival. After LPS-induced injury, mice supplemented with TDCA showed decreased intestinal apoptosis by both H&E and caspase-3. They also had increased intestinal proliferation by 5-bromo-2'deoxyuridine staining and increased villus length. Conclusions: Dietary TDCA supplementation alleviates mucosal damage and improves survival after LPS-induced intestinal injury. Taurodeoxycholic acid is protective of the intestinal mucosa by increasing resistance to injury-induced apoptosis, stimulating enterocyte proliferation, and increasing villus length. Taurodeoxycholic acid supplementation also results in an increased survival benefit. Therefore, bile acid supplementation may potentially protect the intestine from injury or infection.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。