Liquid Biopsy Based Bladder Cancer Diagnostic by Machine Learning

基于液体活检的机器学习膀胱癌诊断

阅读:2
作者:Ērika Bitiņa-Barlote, Dmitrijs Bļizņuks, Sanda Siliņa, Mihails Šatcs, Egils Vjaters, Vilnis Lietuvietis, Miki Nakazawa-Miklaševiča, Juris Plonis, Edvīns Miklaševičs, Zanda Daneberga, Jānis Gardovskis

Conclusions

Our findings indicate the potential of a multi-modal approach to improve the accuracy of bladder cancer diagnosis in a non-invasive manner.

Methods

This study combined molecular biology methods for liquid biopsy, routine clinical data, and application of machine learning approach for the acquired data analysis. We evaluated urinary exosome miRNA expression data in combination with patient test

Results

Based solely on miRNA data, the SVM model achieved an ROC curve area of 0.75. Patient analysis' clinical and demographic data obtained ROC curve area of 0.80. Combining both data types enhanced performance, resulting in an F1 score of 0.79 and an ROC of 0.85. The feature importance analysis identified key predictors, including erythrocytes in urine, age, and several miRNAs. Conclusions: Our findings indicate the potential of a multi-modal approach to improve the accuracy of bladder cancer diagnosis in a non-invasive manner.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。