Liquid Biopsy Based Bladder Cancer Diagnostic by Machine Learning

基于液体活检的机器学习膀胱癌诊断

阅读:8
作者:Ērika Bitiņa-Barlote, Dmitrijs Bļizņuks, Sanda Siliņa, Mihails Šatcs, Egils Vjaters, Vilnis Lietuvietis, Miki Nakazawa-Miklaševiča, Juris Plonis, Edvīns Miklaševičs, Zanda Daneberga, Jānis Gardovskis

Conclusions

Our findings indicate the potential of a multi-modal approach to improve the accuracy of bladder cancer diagnosis in a non-invasive manner.

Methods

This study combined molecular biology methods for liquid biopsy, routine clinical data, and application of machine learning approach for the acquired data analysis. We evaluated urinary exosome miRNA expression data in combination with patient test

Results

Based solely on miRNA data, the SVM model achieved an ROC curve area of 0.75. Patient analysis' clinical and demographic data obtained ROC curve area of 0.80. Combining both data types enhanced performance, resulting in an F1 score of 0.79 and an ROC of 0.85. The feature importance analysis identified key predictors, including erythrocytes in urine, age, and several miRNAs. Conclusions: Our findings indicate the potential of a multi-modal approach to improve the accuracy of bladder cancer diagnosis in a non-invasive manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。