Cheminformatics-driven discovery of polymeric micelle formulations for poorly soluble drugs

化学信息学驱动的难溶性药物聚合物胶束配方的发现

阅读:3
作者:Vinicius M Alves, Duhyeong Hwang, Eugene Muratov, Marina Sokolsky-Papkov, Ekaterina Varlamova, Natasha Vinod, Chaemin Lim, Carolina H Andrade, Alexander Tropsha, Alexander Kabanov

Abstract

Many drug candidates fail therapeutic development because of poor aqueous solubility. We have conceived a computer-aided strategy to enable polymeric micelle-based delivery of poorly soluble drugs. We built models predicting both drug loading efficiency (LE) and loading capacity (LC) using novel descriptors of drug-polymer complexes. These models were employed for virtual screening of drug libraries, and eight drugs predicted to have either high LE and high LC or low LE and low LC were selected. Three putative positives, as well as three putative negative hits, were confirmed experimentally (implying 75% prediction accuracy). Fortuitously, simvastatin, a putative negative hit, was found to have the desired micelle solubility. Podophyllotoxin and simvastatin (LE of 95% and 87% and LC of 43% and 41%, respectively) were among the top five polymeric micelle-soluble compounds ever studied experimentally. The success of the strategy described herein suggests its broad utility for designing drug delivery systems.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。