Impact of an extended light regimen imposed during nursery period on the performance and lipid metabolism of weanling pigs

保育期延长光照对断奶仔猪生产性能和脂质代谢的影响

阅读:12
作者:Guangfan Liu, Fen Su, Xingyue Zou, Xingming Yang, Liang Tian

Conclusion

Together, these findings suggest that there is an advantage, in terms of growth performance and fat deposition, in imposing a prolonged light program (16-h light/d) on nursery piglets to alleviate the negative aspects of weaning stress.

Methods

Twenty-four piglets weaned at 28 days of age were randomly dichotomized into two groups that were alternatively subjected to either long photoperiod (LP) group (16 L:8 D) or short photoperiod (SP) group (10 L:14 D) for 42days. Four replicates of three animals per replicates were used per experimental treatment.

Objective

This study aimed to assess the impact of a prolonged photoperiod on the growth performance and lipid metabolism of weaned piglets.

Results

Our results demonstrated that prolonged photoperiod increased piglet body weight, average daily weight gain (ADG), backfat thickness (BF), backfat index during the nursery period, and increased ADG, average daily feed intake (ADFI), and decreased the F/G of piglets during the experiment days 29 to 42. Meanwhile, we observed LP piglets' plasma melatonin, growth hormone and serotonin levels were decreased at 14 d and 42 d compared to SP piglets. Moreover, up-regulated mRNA or protein expression of PPARγ and CEBPα, and lower mRNA or protein expression of MTR1, ATGL, HSL, PPARα, and CPT1α, were observed in back subcutaneous fat of LP group compared with that of SP group. Significant increases were observed in the mRNA or protein contents of lipogenic genes, including C/EBPα, SREBP-1c, ACCα, and FAS, in the liver of LP piglets, whereas CPT1α and ACOX1 mRNA levels and PPARα and MTR1 protein expression were significantly downregulated in LP group compared to SP group. Extended photoperiod also increased lipid content in longissimus dorsi muscle that was associated with higher mRNA or protein levels of SREBP-1c, ACCα, FAS, Pref1, and LPL, decreased mRNA or protein contents of LeptinR, MTR1, HSL, and ACOX1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。