PP2Cδ inhibits p300-mediated p53 acetylation via ATM/BRCA1 pathway to impede DNA damage response in breast cancer

PP2Cδ 通过 ATM/BRCA1 通路抑制 p300 介导的 p53 乙酰化,从而阻止乳腺癌中的 DNA 损伤反应

阅读:2
作者:Qun Li, Qiongyu Hao, Wei Cao, Jieqing Li, Ke Wu, Yahya Elshimali, Donghui Zhu, Qiao-Hong Chen, Guanglin Chen, Jonathan R Pollack, Jay Vadgama, Yong Wu

Abstract

Although nuclear type 2C protein phosphatase (PP2Cδ) has been demonstrated to be pro-oncogenic with an important role in tumorigenesis, the underlying mechanisms that link aberrant PP2Cδ levels with cancer development remain elusive. Here, we found that aberrant PP2Cδ activity decreases p53 acetylation and its transcriptional activity and suppresses doxorubicin-induced cell apoptosis. Mechanistically, we show that BRCA1 facilitates p300-mediated p53 acetylation by complexing with these two proteins and that S1423/1524 phosphorylation is indispensable for this regulatory process. PP2Cδ, via dephosphorylation of ATM, suppresses DNA damage-induced BRCA1 phosphorylation, leading to inhibition of p300-mediated p53 acetylation. Furthermore, PP2Cδ levels correlate with histological grade and are inversely associated with BRCA1 phosphorylation and p53 acetylation in breast cancer specimens. C23, our newly developed PP2Cδ inhibitor, promotes the anticancer effect of doxorubicin in MCF-7 xenograft-bearing nude mice. Together, our data indicate that PP2Cδ impairs p53 acetylation and DNA damage response by compromising BRCA1 function.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。