In Situ Gel Incorporating Disulfiram Nanoparticles Rescues the Retinal Dysfunction via ATP Collapse in Otsuka Long-Evans Tokushima Fatty Rats

含有双硫仑纳米粒子的原位凝胶通过大冢长-埃文斯德岛肥胖大鼠的 ATP 崩溃挽救了视网膜功能障碍

阅读:19
作者:Saori Deguchi, Fumihiko Ogata, Mizuki Yamaguchi, Misa Minami, Hiroko Otake, Kazutaka Kanai, Naohito Kawasaki, Noriaki Nagai

Abstract

We attempted to design an ophthalmic in situ gel formulation incorporating disulfiram (DIS) nanoparticles (Dis-NPs/ISG) and demonstrated the therapeutic effect of Dis-NPs/ISG on retinal dysfunction in 15-month-old Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a rat model of diabetes. The DIS particles were crushed using a bead mill to prepare the nanoparticles, and the Dis-NPs/ISG was prepared using a combination of the DIS nanoparticles and an in situ gelling system based on methylcellulose (MC). The particle size of the Dis-NPs/ISG was 80-250 nm, and there was no detectable precipitation or aggregation for 1 month. Moreover, the Dis-NPs/ISG was gelled at 37 °C, and the drug was delivered into the retina by instillation. Only diethyldithiocarbamate (DDC) was detected in the retina (DIS was not detected) when the Dis-NPs/ISG was instilled in the right eye, and the DDC levels in the right retina were significantly higher than those in the left retina. In addition, the retinal residence time of the drug was prolonged by the application of the in situ gelling system, since the DDC levels in the retinas of rats instilled with Dis-NPs/ISG were higher than those in DIS nanoparticles without MC. Furthermore, repetitive instillation of the Dis-NPs/ISG attenuated the deterioration of electroretinograms (ERGs) in 15-month-old OLETF rats by preventing the collapse of ATP production via excessive nitric oxide and recovered the decrease in retinal function. These findings provide important information for the development of novel therapeutic approaches to diabetic retinopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。