Inhibitory pathways in the circular muscle of rat jejunum

大鼠空肠环肌中的抑制通路

阅读:3
作者:Gwen Vanneste, Patrick Robberecht, Romain A Lefebvre

Abstract

1. Conflicting data have been reported on the contribution of nitric oxide (NO) to inhibitory neurotransmission in rat jejunum. Therefore, the mechanism of relaxation and contribution to inhibitory neurotransmission of NO, adenosine 5'-triphosphate (ATP), vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) was examined in the circular muscle of Wistar-Han rat jejunum. 2. Mucosa-free circular muscle strips were precontracted with methacholine in the presence of guanethidine and exposed to electrical field stimulation (EFS) and exogenous NO, ATP, VIP and PACAP. All stimuli induced reduction of tone and inhibition of phasic motility. Only electrically induced responses were sensitive to tetrodotoxin (3 x 10(-6) m). 3. NO (10(-6)-10(-4) m)-induced concentration-dependent relaxations that were inhibited by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ; 10(-5) m) and the small conductance Ca(2+)-activated K(+)-channel blocker apamin (APA; 3 x 10(-8) m). 4. Relaxations elicited by exogenous ATP (10(-4)-10(-3) m) were inhibited by the P2Y purinoceptor antagonist reactive blue 2 (RB2; 3 x 10(-4) m), but not by APA and ODQ. 5. The inhibitory responses evoked by 10(-7) m VIP and 3 x 10(-8) m PACAP were decreased by the selective PAC(1) receptor antagonist PACAP(6-38) (3 x 10(-6) m) and APA. The VPAC(2) receptor antagonist PG99-465 (3 x 10(-7) m) reduced relaxations caused by VIP, but not those by PACAP, while the VPAC(1) receptor antagonist PG97-269 (3 x 10(-7) m) had no influence. 6. EFS-induced relaxations were inhibited by the NO-synthase inhibitor N(omega)-nitro-l-arginine methyl ester (3 x 10(-4) m), ODQ and APA, but not by RB2, PG97-269, PG99-465 and PACAP(6-38). 7. These results suggest that NO is the main inhibitory neurotransmitter in the circular muscle of Wistar-Han rat jejunum acting through a rise in cyclic guanosine monophosphate levels and activation of small conductance Ca(2+)-dependent K(+) channels.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。