Partial Inhibition of Epithelial-to-Mesenchymal Transition (EMT) Phenotypes by Placenta-Derived DBMSCs in Human Breast Cancer Cell Lines, In Vitro

胎盘衍生的 DBMSC 在体外对人类乳腺癌细胞系中的上皮-间质转化 (EMT) 表型进行部分抑制

阅读:18
作者:Yasser Basmaeil, Abdullah Al Subayyil, Haya Bin Kulayb, Altaf A Kondkar, Maha Alrodayyan, Tanvir Khatlani

Abstract

Stem cell-based therapies hold significant potential for cancer treatment due to their unique properties, including migration toward tumor niche, secretion of bioactive molecules, and immunosuppression. Mesenchymal stem cells (MSCs) from adult tissues can inhibit tumor progression, angiogenesis, and apoptosis of cancer cells. We have previously reported the isolation and characterization of placenta-derived decidua basalis mesenchymal stem cells (DBMSCs), which demonstrated higher levels of pro-migratory and anti-apoptotic genes, indicating potential anti-cancer effects. In this study, we analyzed the anti-cancer effects of DBMSCs on human breast cancer cell lines MDA231 and MCF7, with MCF 10A used as control. We also investigated how these cancer cells lines affect the functional competence of DBMSCs. By co-culturing DBMSCs with cancer cells, we analyzed changes in functions of both cell types, as well as alterations in their genomic and proteomic profile. Our results showed that treatment with DBMSCs significantly reduced the functionality of MDA231 and MCF7 cells, while MCF 10A cells remained unaffected. DBMSC treatment decreased epithelial-to-mesenchymal transition (EMT)-related protein levels in MDA231 cells and modulated expression of other cancer-related genes in MDA231 and MCF7 cells. Although cancer cells reduced DBMSC proliferation, they increased their expression of anti-apoptotic genes. These findings suggest that DBMSCs can inhibit EMT-related proteins and reduce the invasive characteristics of MDA231 and MCF7 breast cancer cells, highlighting their potential as candidates for cell-based cancer therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。