Intra-BLA alteration of interneurons' modulation of activity in rats, reveals a dissociation between effects on anxiety symptoms and extinction learning

大鼠 BLA 内中间神经元活动调节的改变,揭示了对焦虑症状的影响与消退学习之间的分离

阅读:2
作者:Rinki Saha, Lisa-Sophie Wüstner, Darpan Chakraborty, Rachel Anunu, Silvia Mandel, Joyeeta Dutta Hazra, Martin Kriebel, Hansjuergen Volkmer, Hanoch Kaphzan, Gal Richter-Levin

Abstract

The basolateral amygdala (BLA) is a dynamic brain region involved in emotional experiences and subject to long-term plasticity. The BLA also modulates activity, plasticity, and related behaviors associated with other brain regions, including the mPFC and hippocampus. Accordingly, intra-BLA plasticity can be expected to alter both BLA-dependent behaviors and behaviors mediated by other brain regions. Lasting intra-BLA plasticity may be considered a form of metaplasticity, since it will affect subsequent plasticity and response to challenges later on. Activity within the BLA is tightly modulated by GABAergic interneurons, and thus inducing lasting alteration of GABAergic modulation of principal neurons may have an impactful metaplastic effect on BLA functioning. Previously, we demonstrated that intra-BLA knockdown (KD) of neurofascin (NF) reduced GABAergic synapses exclusively at the axon initial segment (AIS). Here, by reducing the expression of the tyrosine kinase receptor ephrin A7 (EphA7), we selectively impaired the modulatory function of a different subpopulation of interneurons, specifically targeting the soma and proximal dendrites of principal neurons. This perturbation induced an expected reduction in the spontaneous inhibitory synaptic input and an increase in the excitatory spontaneous synaptic activity, most probably due to the reduction of inhibitory tone. Moreover, this increased synaptic activity was followed by a reduction in intrinsic excitability. While intra-BLA NF-KD resulted in impaired extinction learning, without increased symptoms of anxiety, intra-BLA reduction of EphA7 expression resulted in increased symptoms of anxiety, as measured in the elevated plus maze, but without affecting fear conditioning or extinction learning. These results confirm the role of the BLA and intra-BLA metaplasticity in stress-induced increased anxiety symptoms and in impaired fear extinction learning but reveals a difference in intra-BLA mechanisms involved. The results also confirm the contribution of GABAergic interneurons to these effects but indicate selective roles for different subpopulations of intra-BLA interneurons.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。