Role of the NuRD complex and altered proteostasis in cancer cell quiescence

NuRD 复合物和改变的蛋白质稳态在癌细胞静止中的作用

阅读:3
作者:Qi Jiang, Michelle Ertel, Austin Arrigo, Sara Sannino, Jennifer L Goeckeler-Fried, April Sagan, Betsy Ann Varghese, Daniel D Brown, Wayne Stallaert, Adrian Lee, Amanda M Clark, Jeffrey L Brodsky, Hatice U Osmanbeyoglu, Ronald J Buckanovich

Abstract

Cytotoxic chemotherapy remains the primary treatment for ovarian cancer (OvCa). Development of chemoresistance typically results in patient death within two years. As such, understanding chemoresistance is critical. One underexplored mechanism of chemotherapy resistance is quiescence. Quiescent cells, which have reversibly exited the cell cycle, are refractory to most chemotherapies which primarily target rapidly proliferating cells. Here, we report that CHD4 and MBD3, components of the nucleosome remodeling and deacetylase (NuRD) complex, are downregulated in quiescent OvCa cells (qOvCa). Indicating a direct role for NuRD complex downregulation in the induction of quiescence, either CHD4 or MBD3 knockdown or histone deacetylase inhibitors (HDACi), such as vorinostat, induce quiescence in OvCa cells. RNA-Seq analysis of HDACi-treated cells confirmed expression changes consistent with induction of quiescence. We also find that both primary qOvCa and vorinostat-induced qOvCa demonstrate altered proteostasis, including increased proteasome activity and autophagy, and combination therapy of HDACi and proteasome inhibitors or autophagy inhibitors demonstrated profound synergistic death of OvCa cells. Finally, we overlapped RNA-Seq signatures from quiescent ovarian cancer cells with genes essential for quiescence in yeast to identify a "quiescent cell core signature." This core quiescent cell signature appeared to be conserved across multiple cancer types, suggesting new therapeutic targets.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。