The Combination of Salidroside and Hedysari Radix Polysaccharide Inhibits Mitochondrial Damage and Apoptosis via the PKC/ERK Pathway

红景天苷与红芪多糖联合作用通过PKC/ERK通路抑制线粒体损伤及细胞凋亡

阅读:2
作者:Sixia Yang, Linshuang Wang, Zeping Xie, Yi Zeng, Qiaowu Xiong, Tingting Pei, Dongfeng Wei, Weidong Cheng

Background

Beta-amyloid (Aβ) peptide is a widely recognized pathological marker of Alzheimer's disease (AD). Salidroside and Hedysari Radix polysaccharide (HRP) were extracted from Chinese herb medicine Rhodiola rosea L and Hedysarum polybotrys Hand-Mazz, respectively. The neuroprotective effects and mechanisms of the combination of salidroside and Hedysari Radix polysaccharide (CSH) against Aβ 25-35 induced neurotoxicity remain unclear.

Conclusions

CSH treatment have protective effects against Aβ 25-35-induced cytotoxicity through decreasing ROS levels, increasing MMP, inhibiting early apoptosis, and regulating PKC/ERK pathway in HT22 cells. CSH may be a potential therapeutic agent for treating or preventing neurodegenerative diseases.

Methods

HT22 cells were pretreated with various concentrations of salidroside or HRP for 24 h, followed by exposed to 20 μm Aβ 25-35 in the presence of salidroside or RHP for another 24 h. In a CSH protective assay, HT22 cells were pretreated with 40 μm salidroside and 20 μg/mL HRP for 24 h. The cell viability assay, cell morphology observation, determination of mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and cell apoptosis rate were performed. The mRNA expression of protein kinase C-beta (PKCβ), Bax, and Bcl-2 were measured by qRT-PCR. The protein expression levels of cleaved caspase-3, Cyt-C, PKCβ, phospho-ERK1/2, Bax, and Bcl-2 were measured by Western blot.

Objective

This study aims to investigate the neuroprotective effects and pharmacological mechanisms of CSH on Aβ 25-35-induced HT22 cells. Materials and

Results

CSH treatment increased cell viability, MMP, and decreased ROS generation in Aβ 25-35-induced HT22 cells. PKCβ and Bcl-2 mRNA expression were elevated by CSH while Bax was decreased. CSH increased the protein expression levels of PKCβ, Bcl-2, and phospho-ERK1/2, and decreased those of Bax, Cyt-C, and cleaved caspase-3. Conclusions: CSH treatment have protective effects against Aβ 25-35-induced cytotoxicity through decreasing ROS levels, increasing MMP, inhibiting early apoptosis, and regulating PKC/ERK pathway in HT22 cells. CSH may be a potential therapeutic agent for treating or preventing neurodegenerative diseases.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。