Melatonin ameliorates Slc26a2-associated chondrodysplasias by attenuating endoplasmic reticulum stress and apoptosis of chondrocytes

褪黑激素通过减轻内质网应激和软骨细胞凋亡改善 Slc26a2 相关软骨发育不良

阅读:3
作者:Pan Li, Chao Zheng, Jingyan Hu, Weiguang Lu, Dong Wang, Xue Hao, Chengxiang Zhao, Liu Yang, Zhuojing Luo, Qiang Jie

Abstract

Although the pathogenesis and mechanism of congenital skeletal dysplasia are better understood, progress in drug development and intervention research remains limited. Here we report that melatonin treatment elicits a mitigating effect on skeletal abnormalities caused by SLC26A2 deficiency. In addition to our previous finding of endoplasmic reticulum stress upon SLC26A2 deficiency, we found calcium (Ca2+) overload jointly contributed to SLC26A2-associated chondrodysplasias. Continuous endoplasmic reticulum stress and cytosolic Ca2+ overload in turn triggered apoptosis of growth plate chondrocytes. Melatonin, known for its anti-oxidant and anti-inflammatory properties, emerged as a promising therapeutic approach in our study, which enhanced survival, proliferation, and maturation of chondrocytes by attenuating endoplasmic reticulum stress and Ca2+ overload. Our findings not only demonstrated the efficacy of melatonin in ameliorating abnormal function and cell fate of SLC26A2-deficient chondrocytes in vitro but also underscored its role in partially alleviating the skeletal dysplasia seen in Col2a1-CreER T2 ; Slc26a2 fl/fl mice. As revealed by histology and micro-CT analyses, melatonin significantly improved retarded cartilage growth, defective trabecular bone formation, and tibial genu varum in vivo. Collectively, these data shed translational insights for drug development and support melatonin as a potential treatment for SLC26A2-related chondrodysplasias.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。