New tetrahydroisoquinolines bearing nitrophenyl group targeting HSP90 and RET enzymes: synthesis, characterization and biological evaluation

靶向 HSP90 和 RET 酶的含硝基苯基的新型四氢异喹啉:合成、表征及生物学评价

阅读:7
作者:Etify A Bakhite, Reda Hassanien, Nasser Farhan, Eman M Sayed, Marwa Sharaky

Abstract

In this study, new tetrahydroisoquinoline compounds were synthesized by reaction of 7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8- (3-nitrophenyl or 4-nitrophenyl)-5,6,7,8-tetrahydrosoquinoline-3(2H)-thiones with methyl iodide, chloro acetonitrile, ethyl chloroacetate to produce compounds 3-5 and reacted with N-arylchloroacetamides reagents to gave tetrahydroisoquinolin-3-ylthio) acetamides compounds 6a-c, 8a-b which can cyclized to 6,7,8,9-tetrahydrothieno[2,3-c]Isoquinoline-2-carboxamides compounds 7a-c, 9a-b. Also react with N-(benzthiazol-2-yl)-2-chloroacetamideto give compound 10. The structures of all newly synthesized compounds were characterized by elemental and spectral analyses. Also, most of the synthesized compounds were evaluated for their anticancer activities aganist MCF7 and HEPG2 cell lines. From the result we found that the most active compound against the MCF7 cell lines was compound 8b, and the most active compound against HEPG2 cell lines was compound 3. Then the effects of compound 3 on the HEPG2 cell line was investigated using an apoptotic Annexin V-FITC test and flow cytometry. Compound 3 induced a 59-fold increase in HEPG2 cell line apoptosis and cell cycle arrested at the G0-G1, G2/M phases. Moreover, the molecular docking study was applied and the result showed that compounds 8b bind to the RET enzyme with binding energies of - 6.8 kcal/mol in comparison with standard alectinib, which exhibits a binding energy of - 7.2 kcal/mol. Compound 3 can bind with HSP 90 with a binding energy (ΔG) of - 6.8 kcal/mol, which was comparable to the standard Onalespib (- 7.1 kcal/mol).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。