Synthesis, biological evaluation, and molecular docking of novel ferulic acid derivatives containing a 1,3,4-oxadiazole thioether and trifluoromethyl pyrimidine skeleton

含1,3,4-恶二唑硫醚和三氟甲基嘧啶骨架的新型阿魏酸衍生物的合成、生物学评价及分子对接

阅读:2
作者:Jiansong An, Nianjuan Pan, Chunyi Liu, Haijiang Chen, Qiang Fei, Xiuhai Gan, Wenneng Wu

Abstract

In this study, 24 novel ferulic acid derivatives containing 1,3,4-oxadiazole thioether and trifluoromethyl pyrimidine were designed and synthesized. Bioactivity assay showed that some of the target compounds exhibited moderate to good antifungal activity against Botryosphaeria dothidea BD), Phomopsis sp. (PS), Botrytis cinerea (BC), Fusarium spp. (FS), Fusarium graminearum (FG), and Colletotrichum sp. (CS). Especially, compound 6f demonstrated superior antifungal activity against Phomopsis sp., with an EC50 value of 12.64 μg mL-1, outperforming pyrimethanil (35.16 μg mL-1) and hymexazol (27.01 μg mL-1). Meanwhile, compound 6p showed strong antibacterial activity against X. axonopodis pv. citri (XAC) in vitro, with an inhibition ratio of 85.76%, which was higher than thiodiazole copper's 76.59% at 100 μg mL-1. Furthermore, molecular docking simulations elucidated that compound 6f engaged in hydrogen bonding with the succinate dehydrogenase (SDH) enzyme at SER-17, SER-39, ARG-14 and ARG-43 sites, clarifying its mode of action. This study highlights the potential of these novel ferulic acid derivatives as promising agents for controlling fungal and bacterial threats to plant health. To the best of our knowledge, this study represents the first report on the antifungal and antibacterial properties of ferulic acid derivatives containing 1,3,4-oxadiazole thioether and trifluoromethyl pyrimidine skeleton.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。