microRNAs in the Same Clusters Evolve to Coordinately Regulate Functionally Related Genes

同一簇中的 microRNA 进化以协调调控功能相关基因

阅读:2
作者:Yirong Wang, Junjie Luo, Hong Zhang, Jian Lu

Abstract

MicroRNAs (miRNAs) are endogenously expressed small noncoding RNAs. The genomic locations of animal miRNAs are significantly clustered in discrete loci. We found duplication and de novo formation were important mechanisms to create miRNA clusters and the clustered miRNAs tend to be evolutionarily conserved. We proposed a "functional co-adaptation" model to explain how clustering helps newly emerged miRNAs survive and develop functions. We presented evidence that abundance of miRNAs in the same clusters were highly correlated and those miRNAs exerted cooperative repressive effects on target genes in human tissues. By transfecting miRNAs into human and fly cells and extensively profiling the transcriptome alteration with deep-sequencing, we further demonstrated the functional co-adaptation between new and old miRNAs in the miR-17-92 cluster. Our population genomic analysis suggest that positive Darwinian selection might be the driving force underlying the formation and evolution of miRNA clustering. Our model provided novel insights into mechanisms and evolutionary significance of miRNA clustering.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。