Synthesis of new binary trimethoxyphenylfuran pyrimidinones as proficient and sustainable corrosion inhibitors for carbon steel in acidic medium: experimental, surface morphology analysis, and theoretical studies

合成新型二元三甲氧基苯基呋喃嘧啶酮作为酸性介质中碳钢有效且可持续的腐蚀抑制剂:实验、表面形貌分析和理论研究

阅读:12
作者:Hajar A Ali, Ahmed A El-Hossiany, Ashraf S Abousalem, Mohamed A Ismail, Abd El-Aziz S Fouda, Eslam A Ghaith

Abstract

In this study, synthesis and assessment of the corrosion inhibition of four new binary heterocyclic pyrimidinones on CS in 1.0 M hydrochloric acid solutions at various temperatures (30-50 °C) were investigated. The synthesized molecules were designed and synthesized through Suzuki coupling reaction, the products were identified as 5-((5-(3,4,5-trimethoxyphenyl)furan-2-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-trione (HM-1221), 2-thioxo-5-((5-(3,4,5-trimethoxyphenyl)furan-2-yl)methylene)dihydropyrimidine-4,6(1H,5H)-dione (HM-1222), 1,3-diethyl-2-thioxo-5-((5-(3,4,5-trimethoxyphenyl)furan-2-yl)methylene)dihydropyrimidine-4,6(1H,5H)-dione (HM-1223) and 1,3-dimethyl-5-((5-(3,4,5-trimethoxyphenyl)furan-2-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-trione (HM-1224). The experiments include weight loss measurements (WL), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP). From the measurements, it can be shown that the inhibition efficiency (η) of these organic derivatives increases with increasing the doses of inhibitors. The highest η recorded from EIS technique were 89.3%, 90.0%, 92.9% and 89.7% at a concentration of 11 × 10-6 M and 298 K for HM-1221, HM-1222, HM-1223, and HM-1224, respectively. The adsorption of the considered derivatives fit to the Langmuir adsorption isotherm. Since the ΔGoads values were found to be between - 20.1 and - 26.1 kJ mol-1, the analyzed isotherm plots demonstrated that the adsorption process for these derivatives on CS surface is a mixed-type inhibitors. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM) and Fourier- transform infrared spectroscopy (FTIR) were utilized to study the surface morphology, whereby, quantum chemical analysis can support the mechanism of inhibition. DFT data and experimental findings were found in consistent agreement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。