Prostaglandin E2-EP1 and EP2 receptor signaling promotes apical junctional complex disassembly of Caco-2 human colorectal cancer cells

前列腺素 E2-EP1 和 EP2 受体信号促进 Caco-2 人结肠直肠癌细胞顶端连接复合物的分解

阅读:6
作者:Marcelo N Tanaka, Bruno L Diaz, Wanderley de Souza, Jose A Morgado-Diaz

Background

The apical junctional complex (AJC) is a dynamic structure responsible to maintain epithelial cell-cell adhesions and it plays important functions such as, polarity, mechanical integrity, and cell signaling. Alteration of this complex during pathological events leads to an impaired epithelial barrier by perturbation of the cell-cell adhesion system. Although clinical and experimental data indicate that prostaglandin E(2) (PGE2) plays a critical function in promoting cell motility and cancer progression, little is known concerning its role in AJC disassembly, an event that takes place at the beginning of colorectal tumorigenesis. Using Caco-2 cells, a cell line derived from human colorectal cancer, we investigated the effects of prostaglandin E(2) (PGE(2)) treatment on AJC assembly and function.

Conclusion

Our findings strongly suggest a central role of Prostaglandin E2-EP1 and EP2 receptor signaling to mediate AJC disassembly through a mechanism that involves PKC and claudin-1 as important target for the TJ-related effects in human colorectal cancer cells (Caco-2).

Results

Exposition of Caco-2 cells to PGE(2) promoted differential alteration of AJC protein distribution, as evidenced by immunofluorescence and immunoblotting analysis and impairs the barrier function, as seen by a decrease in the transepithelial electric resistance and an increase in the permeability to ruthenium red marker. We demonstrated the involvement of EP1 and EP2 prostaglandin E(2) receptor subtypes in the modulation of the AJC disassembly caused by prostanoid. Furthermore, pharmacological inhibition of protein kinase-C, but not PKA and p38MAPK significantly prevented the PGE(2) effects on the AJC disassembly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。