Cloning and Function Analysis of the CsTAU1 in Response to Salt-Alkali Stress

CsTAU1基因克隆及在盐碱胁迫下的功能分析

阅读:16
作者:Fan Zhang, Dandan Li, Rina Sa, Ling Wang, Yunyan Sheng

Abstract

To investigate the role of candidate genes for salt-alkali tolerance in cucumber (Cucumis sativus L.), this study screened CsTAU1 in the glutathione pathway from previous transcriptome data for cloning and functional analysis. Clone cucumber CsTAU1 contains one 675 bp open reading frame, containing one GST-N-Tau domain and one GST-C-Tau domain, and is expressed in cytoplasm. After successfully constructing overexpression vectors of CsTAU1 (+) and CsTAU1 (-), they were transferred into cucumber varieties 'D1909' (high salt alkali resistance) and 'D1604' (low salt alkali resistance) for salt-alkali resistance identification. It was found that under salt-alkali stress, CsTAU1 (+)-overexpressing plants showed strong resistance to salt-alkali stress, while CsTAU1 (-)-overexpressing plants showed the opposite situation. qRT-PCR analysis was performed on other glutathione pathway-related genes in CsTAU1-overexpressing plants. The expression patterns of LOC101219529 and LOC105434443 were the same as CsTAU1, and the introduction of CsTAU1 (+) increased the chlorophyll, α-Naphthylamine oxidation, glutathione S-transferase (GST), and catalase (CAT) content of cucumber. The research results provide a theoretical basis for cultivating salt-alkali-tolerant cucumber varieties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。