A Multiple-Response Cascade Nanoreactor for Starvation and Deep Catalysis Chemodynamic Assisted Near-Infrared-II Mild Photothermal Therapy

用于饥饿和深度催化化学动力学辅助近红外 II 温和光热疗法的多响应级联纳米反应器

阅读:3
作者:Qiao Yu, Jie Zhou, Hui Wang, Yong Liu, Hong Zhou, Bin Kang, Hong-Yuan Chen, Jing-Juan Xu

Abstract

Photothermal therapy (PTT) is hampered by the limited capacity of light penetration, non-specific thermal diffusion damage to surrounding healthy tissues, and thermoresistance originating in heat shock proteins (HSPs). Here, a triple-respondent (triphosphate, glutathione, and pH) cascade nanoreactor was designed through the glucose consumption-induced thermal sensitization strategy. The near-infrared-II (NIR-II) photothermal reagent Bi-Au was encapsulated in a glucose oxidase-based protein-polyphenol structure with the help of the zeolitic imidazolate framework-8 (ZIF-8). The composite nanosystem possesses triple-enzyme activity (glucose oxidase, peroxidase-like, and catalase-like). On one hand, the product of hydrogen peroxide from glycolysis can be converted into reactive oxygen species and oxygen to enhance the chemodynamic therapy and alleviate the state of hypoxia in tumor cells. On the other hand, glucose consumption could down-regulate the expression level of HSPs. The heat resistance ability of cells decreased under starvation and oxidative damage states, which is beneficial to reduce the temperature required for PTT and improve the efficiency of mild PTT. The cascade nanocapsule exhibited high tumor inhibition and proposed a typical synergistic strategy for starvation, chemodynamic, and NIR-II mild photothermal therapy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。