344Laser bioprinting of human iPSC-derived neural stem cells and neurons: Effect on cell survival, multipotency, differentiation, and neuronal activity

344 人类 iPSC 衍生的神经干细胞和神经元的激光生物打印:对细胞存活、多能性、分化和神经元活动的影响

阅读:7
作者:Lothar Koch, Andrea Deiwick, Jordi Soriano, Boris Chichkov

Abstract

Generation of human neuronal networks by three-dimensional (3D) bioprinting is promising for drug testing and hopefully will allow for the understanding of cellular mechanisms in brain tissue. The application of neural cells derived from human induced-pluripotent stem cells (hiPSCs) is an obvious choice, since hiPSCs provide access to cells unlimited in number and cell types that could be generated by differentiation. The questions in this regard include which neuronal differentiation stage is optimal for printing of such networks, and to what extent the addition of other cell types, especially astrocytes, supports network formation. These aspects are the focus of the present study, in which we applied a laser-based bioprinting technique and compared hiPSC-derived neural stem cells (NSCs) with neuronal differentiated NSCs, with and without the inclusion of co-printed astrocytes. In this study, we investigated in detail the effects of cell types, printed droplet size, and duration of differentiation before and after printing on viability, as well as proliferation, stemness, differentiation potential, formation of dendritic extensions and synapses, and functionality of the generated neuronal networks. We found a significant dependence of cell viability after dissociation on differentiation stage, but no impact of the printing process. Moreover, we observed a dependence of the abundance of neuronal dendrites on droplet size, a marked difference between printed cells and normal cell culture in terms of further differentiation of the cells, especially differentiation into astrocytes, as well as neuronal network formation and activity. Notably, there was a clear effect of admixed astrocytes on NSCs but not on neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。