Proof of Concept Study: Comparison of Semi-Automated RNA Isolation Methods from Archived Formalin-Fixed, Paraffin-Embedded Tissues with Clinical Routine RNA Isolation Methods

概念验证研究:将存档的福尔马林固定、石蜡包埋组织的半自动化 RNA 分离方法与临床常规 RNA 分离方法进行比较

阅读:2
作者:Patrick Hannibal Dalsbo Petersen, Jaslin Pallikkunnath James, Lene Buhl Riis, Claus Kim Høgdall, Estrid Vilma Høgdall

Abstract

High-quality RNA is crucial in clinical diagnostics and precision medicine. Formalin-fixed and paraffin-embedded (FFPE) tissues pose a challenge due to nucleic acid fragmentation and crosslinking. In this pilot study, various commercially available techniques for extracting RNA from small FFPE samples were compared. We evaluated the KingFisher Duo automated system or the manual MagMAX FFPE DNA/RNA Ultra Kit as an RNA extraction method combined with either a xylene, d-limonene, or AutoLys M tubes deparaffinization method. Additionally, the automated Maxwell RSC RNA FFPE kit and the High Pure FFPET RNA Isolation Kit were examined using FFPE samples from inflammatory bowel disease (IBD) patients, as well as samples from ovarian, kidney, and breast cancer and the skin. The KingFisher Duo system gave a higher yield and more consistent RNA quantities, especially from small volumes of IBD samples, compared to manual extraction. The deparaffinization method also impacted results, with AutoLys M tubes proving effective in combination with the KingFisher Duo system. Conversely, the High Pure kit exhibited higher yields for larger FFPE samples. While RNA integrity is a critical factor, particularly for messenger RNA (mRNA) expression studies, its role is less prominent in microRNA (miRNA) analyses. Recognizing this, our study focused on RNA yield and purity (A260/A230) to evaluate RNA extraction methods for various sample types. These findings emphasize the importance of selecting appropriate RNA extraction methods based on sample characteristics and research goals, highlighting the performance of automated methods and the impact of deparaffinization choices. The findings contribute to refining RNA extraction for molecular biology analyses, suggesting avenues for further exploration, including cost-effectiveness under specific experimental conditions.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。