Background
Methicillin-resistant Staphylococcus aureus (MRSA) sequence type (ST) 45 is a globally disseminated MRSA lineage. Herein, we investigated whether MRSA ST45 isolates from cellulitis and from osteomyelitis display distinctive phenotypic and genomic characteristics.
Conclusions
The emergence and spread of the highly pathogenic and multidrug-resistant ST45 MRSAs identified from osteomyelitis may pose a serious threat on public health.
Methods
A total of 15 MRSA ST45 isolates from cellulitis (CL-MRSA; n = 6) or osteomyelitis (OM-MRSA; n = 9) were collected in a Taiwan hospital. These MRSA ST45 isolates were characterized for their antimicrobial susceptibility, biofilm-forming ability, cellular infectivity in vitro, and pathogenicity in vivo. Four CL-MRSA and 6 OM-MRSA ST45 isolates were selected for whole-genome sequencing (WGS).
Results
Antibiotic resistance tests showed that all OM-MRSA ST45 strains, but not CL-MRSA ST45 strains, were resistant to ciprofloxacin, levofloxacin, gentamicin, and doxycycline. Compared to the CL-MRSA ST45 isolates, the OM-MRSA ST45 isolates had stronger biofilm-forming ability and cellular infectivity and caused more severe disease in mice. WGS analysis revealed that these OM-MRSA ST45 isolates carry multiple common mutations or polymorphisms in genes associated with antibiotic resistance and virulence. Moreover, the transposable elements IS256 and IS257R2 were found only in the OM-MRSA ST45 isolates. Conclusions: The emergence and spread of the highly pathogenic and multidrug-resistant ST45 MRSAs identified from osteomyelitis may pose a serious threat on public health.