USP5-dependent HDAC1 promotes cisplatin resistance and the malignant progression of non-small cell lung cancer by regulating RILP acetylation levels

USP5依赖的HDAC1通过调节RILP乙酰化水平促进顺铂耐药和非小细胞肺癌的恶性进展

阅读:3
作者:Rongguo Lu, Yulin Jin, Mingfeng Zheng

Background

Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, with cisplatin (DDP) resistance being a significant challenge in its treatment. Histone deacetylase 1 (HDAC1) has been implicated in the regulation of NSCLC progression; however, its role in the resistance of NSCLC to DDP remains unclear.

Conclusion

USP5-dependentstabilization of HDAC1 contributed to cisplatin resistance and the malignancy of NSCLC by diminishing the levels of RILP acetylation, which suggested that targeting the HDAC1-USP5axis might represent a novel therapeutic strategy for overcoming DDP resistance in NSCLC patients.

Methods

The mRNA levels of HDAC1, ubiquitin specific peptidase 5 (USP5), and Rab interacting lysosomal protein (RILP) were analyzed by quantitative real-time polymerase chain reaction. The protein expression of HDAC1, multidrug resistance protein 1 (MRP1) and RILP was detected by western blotting assay or immunohistochemistry assay. The IC50 value of DDP was determined using a cell counting kit-8 assay, while cell proliferation, apoptosis, and invasion were assessed using 5-Ethynyl-2'-deoxyuridine assay, flow cytometry, and trans well invasion assay, respectively. Cancer stem-like cell properties were analyzed by a sphere formation assay. The interaction between USP5 andHDAC1 was investigated using MG132 assay and co-immunoprecipitation (Co-IP).RILP acetylation was analyzed by a Co-IP assay. A xenograft mouse model assay was employed to study the in vivo effects of HDAC1 silencing on DDP sensitivity.

Results

HDAC1 expression was upregulated in DDP-resistant NSCLC tissues and cells. Silencing HDAC1 enhanced the sensitivity of NSCLC cells to DDP, inhibited cell proliferation, invasion, and the formation of microspheres and induced cell apoptosis. USP5 was found to deubiquitinate and stabilize HDAC1 in DDP-resistant NSCLC cells. Moreover, HDAC1 overexpression reversed the effects induced by USP5 silencing. HDAC1 also sensitized Rab-interacting lysosomal protein (RILP) acetylation in DDP-resistant NSCLC cells, and RILP upregulation counteracted the effects of HDAC1 overexpression in DDP-resistant NSCLC cells. HDAC1 silencing also improved the sensitivity of tumors to DDP in vivo.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。