High-Throughput Variant Detection Using a Color-Mixing Strategy

使用颜色混合策略进行高通量变异检测

阅读:3
作者:Nina G Xie, Kerou Zhang, Ping Song, Renqiang Li, Junfeng Luo, David Y Zhang

Abstract

Many diseases are related to multiple genetic alterations within a single gene. Probing for highly multiple (>10) variants in a single quantitative PCR tube is impossible because of a limited number of fluorescence channels and the limited ability to test one variant per channel, increasing the need for tubes. Herein, a novel color-mixing strategy was experimentally validated that uses fluorescence combinations as digital color codes to probe multiple variants simultaneously. The color-mixing strategy relies on a simple intratube assay that can probe for 15 variants as part of an intertube assay that can probe for an exponentially increased number of variants. This strategy is achieved by using multiplex double-stranded toehold probes modified with fluorophores and quenchers; the probes are designed to be quenched or remain luminous after binding to wild-type or variant templates. The color-mixing strategy was used to probe for 21 pathogenic variants in thalassemia and to distinguish between heterozygous and homozygous variants in six tubes, with a specificity of 99% and a sensitivity of 94%. To support tuberculosis diagnosis, the same strategy was applied to simultaneously probe in Mycobacterium tuberculosis for rifampicin-resistance mutations occurring within one 81-bp region and one 48-bp region in the rpoB gene, plus five isoniazid-resistance mutations in the inhA and katG genes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。