High-Throughput Variant Detection Using a Color-Mixing Strategy

使用颜色混合策略进行高通量变异检测

阅读:11
作者:Nina G Xie, Kerou Zhang, Ping Song, Renqiang Li, Junfeng Luo, David Y Zhang

Abstract

Many diseases are related to multiple genetic alterations within a single gene. Probing for highly multiple (>10) variants in a single quantitative PCR tube is impossible because of a limited number of fluorescence channels and the limited ability to test one variant per channel, increasing the need for tubes. Herein, a novel color-mixing strategy was experimentally validated that uses fluorescence combinations as digital color codes to probe multiple variants simultaneously. The color-mixing strategy relies on a simple intratube assay that can probe for 15 variants as part of an intertube assay that can probe for an exponentially increased number of variants. This strategy is achieved by using multiplex double-stranded toehold probes modified with fluorophores and quenchers; the probes are designed to be quenched or remain luminous after binding to wild-type or variant templates. The color-mixing strategy was used to probe for 21 pathogenic variants in thalassemia and to distinguish between heterozygous and homozygous variants in six tubes, with a specificity of 99% and a sensitivity of 94%. To support tuberculosis diagnosis, the same strategy was applied to simultaneously probe in Mycobacterium tuberculosis for rifampicin-resistance mutations occurring within one 81-bp region and one 48-bp region in the rpoB gene, plus five isoniazid-resistance mutations in the inhA and katG genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。