Thioredoxin-interacting protein (TXNIP) is a substrate of the NEDD4-like E3 ubiquitin-protein ligase WWP1 in cellular redox state regulation of acute myeloid leukemia cells

硫氧还蛋白相互作用蛋白 (TXNIP) 是 NEDD4 样 E3 泛素蛋白连接酶 WWP1 的底物,参与调节急性髓系白血病细胞的细胞氧化还原状态

阅读:20
作者:Sara Giovannini, Yanan Li, Rosalba Pecorari, Claudia Fierro, Claudia Fiorilli, Federica Corigliano, Valeria Moriconi, Ji Zhou, Anna De Antoni, Artem Smirnov, Sara Rinalducci, Anna Maria Timperio, Massimiliano Agostini, Jinping Zhang, Yufang Shi, Eleonora Candi, Gerry Melino, Francesca Bernassola

Abstract

The HECT-type E3 ubiquitin WWP1 (also known as NEDD4-like E3 ubiquitin-protein ligase WWP1) acts as an oncogenic factor in acute myeloid leukemia (AML) cells. WWP1 overexpression in AML confers a proliferative advantage to leukemic blasts (abnormal immature white blood cells) and counteracts apoptotic cell death and differentiation. In an effort to elucidate the molecular basis of WWP1 oncogenic activities, we identified WWP1 as a previously unknown negative regulator of thioredoxin-interacting protein (TXNIP)-mediated reactive oxygen species (ROS) production in AML cells. TXNIP inhibits the disulfide reductase enzymatic activity of thioredoxin (Trx), impairing its antioxidant function and, ultimately, leading to the disruption of cellular redox homeostasis. In addition, TXNIP restricts cell growth and survival by blocking glucose uptake and metabolism. Here, we found that WWP1 directly interacts with TXNIP, thus promoting its ubiquitin-dependent proteasomal proteolysis. As a result, accumulation of TXNIP in response to WWP1 inactivation in AML blasts reduces Trx activity and increases ROS production, hence inducing cellular oxidative stress. Increased ROS generation in WWP1-depleted cells culminates in DNA strand breaks and subsequent apoptosis. Coherently with TXNIP stabilization following WWP1 inactivation, we also observed an impairment of both glucose up-take and consumption. Hence, a contribution to the increased cell death observed in WWP1-depleted cells also possibly arises from the attenuation of glucose up-take and glycolytic flux resulting from TXNIP accumulation. Future studies are needed to establish whether TXNIP-dependent deregulation of redox homeostasis in WWP1-overexpressing blasts may affect the response of leukemic cells to chemotherapeutic drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。