Long-Term Exposure to Polystyrene Microspheres and High-Fat Diet-Induced Obesity in Mice: Evaluating a Role for Microbiota Dysbiosis

小鼠长期接触聚苯乙烯微球和高脂饮食诱发的肥胖:评估微生物群失调的作用

阅读:2
作者:Zhian Zhai, Ying Yang, Sheng Chen, Zhenlong Wu

Background

Microplastics (MPs) have become a global environmental problem, emerging as contaminants with potentially alarming consequences. However, long-term exposure to polystyrene microspheres (PS-MS) and its effects on diet-induced obesity are not yet fully understood. Objectives: We aimed to investigate the effect of PS-MS exposure on high-fat diet (HFD)-induced obesity and underlying mechanisms.

Conclusions

Our findings provide a new gut microbiota-driven mechanism for PS-MS-induced obesity in HFD-fed mice, suggesting the need to reevaluate the adverse health effects of MPs commonly found in daily life, particularly in susceptible populations. https://doi.org/10.1289/EHP13913.

Methods

In the present study, C57BL/6J mice were fed a normal diet (ND) or a HFD in the absence or presence of PS-MS via oral administration for 8 wk. Antibiotic depletion of the microbiota and fecal microbiota transplantation (FMT) were performed to assess the influence of PS-MS on intestinal microbial ecology. We performed 16S rRNA sequencing to dissect microbial discrepancies and investigated the dysbiosis-associated intestinal integrity and inflammation in serum.

Results

Compared with HFD mice, mice fed the HFD with PS-MS exhibited higher body weight, liver weight, metabolic dysfunction-associated steatotic liver disease (MASLD) activity scores, and mass of white adipose tissue, as well as higher blood glucose and serum lipid concentrations. Furthermore, 16S rRNA sequencing of the fecal microbiota revealed that mice fed the HFD with PS-MS had greater α<math><mi>α</mi></math>-diversity and greater relative abundances of Lachnospiraceae, Oscillospiraceae, Bacteroidaceae, Akkermansiaceae, Marinifilaceae, Deferribacteres, and Desulfovibrio, but lower relative abundances of Atopobiaceae, Bifidobacterium, and Parabacteroides. Mice fed the HFD with PS-MS exhibited lower expression of MUC2 mucin and higher levels of lipopolysaccharide and inflammatory cytokines [tumor necrosis factor-α<math><mi>α</mi></math> (TNF-α<math><mi>α</mi></math>), interleukin-6 (IL-6), IL-1β<math><mi>β</mi></math>, and IL-17A] in serum. Correlation analyses revealed that differences in the microbial flora of mice exposed to PS-MS were associated with obesity. Interestingly, microbiota-depleted mice did not show the same PS-MS-associated differences in Muc2 and Tjp1 expression in the distal colon, expression of inflammatory cytokines in serum, or obesity outcomes between HFD and HFD + PS-MS. Importantly, transplantation of feces from HFD + PS-MS mice to microbiota-depleted HFD-fed mice resulted in a lower expression of mucus proteins, higher expression of inflammatory cytokines, and obesity outcomes, similar to the findings in HFD + PS-MS mice. Conclusions: Our findings provide a new gut microbiota-driven mechanism for PS-MS-induced obesity in HFD-fed mice, suggesting the need to reevaluate the adverse health effects of MPs commonly found in daily life, particularly in susceptible populations. https://doi.org/10.1289/EHP13913.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。