Evaluating the Piezoelectric Energy Harvesting Potential of 3D-Printed Graphene Prepared Using Direct Ink Writing and Fused Deposition Modelling

评估使用直接墨水书写和熔融沉积成型制备的 3D 打印石墨烯的压电能量收集潜力

阅读:12
作者:Hushein R, Thulasidhas Dhilipkumar, Karthik V Shankar, Karuppusamy P, Sachin Salunkhe, Raja Venkatesan, Gamal A Shazly, Alexandre A Vetcher, Seong-Cheol Kim

Abstract

This research aims to use energy harvested from conductive materials to power microelectronic components. The proposed method involves using vibration-based energy harvesting to increase the natural vibration frequency, reduce the need for battery replacement, and minimise chemical waste. Piezoelectric transduction, known for its high-power density and ease of application, has garnered significant attention. Additionally, graphene, a non-piezoelectric material, exhibits good piezoelectric properties. The research explores a novel method of printing graphene material using 3D printing, specifically Direct Ink Writing (DIW) and fused deposition modelling (FDM). Both simulation and experimental techniques were used to analyse energy harvesting. The experimental technique involved using the cantilever beam-based vibration energy harvesting method. The results showed that the DIW-derived 3D-printed prototype achieved a peak power output of 12.2 µW, surpassing the 6.4 µW output of the FDM-derived 3D-printed prototype. Furthermore, the simulation using COMSOL Multiphysics yielded a harvested output of 0.69 µV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。