Comparative Analysis and Isoform-Specific Therapeutic Vulnerabilities of KRAS Mutations in Non-Small Cell Lung Cancer

非小细胞肺癌中 KRAS 突变的比较分析和异构体特异性治疗脆弱性

阅读:2
作者:Biagio Ricciuti #, Jieun Son #, Jeffrey J Okoro, Alessia Mira, Enrico Patrucco, Yoonji Eum, Xinan Wang, Raymond Paranal, Haiyun Wang, Mika Lin, Heidi M Haikala, Jiaqi Li, Yue Xu, Joao Victor Alessi, Chhayheng Chhoeu, Amanda J Redig, Jens Köhler, Kshiti H Dholakia, Yunhan Chen, Elodie Richard, Marie-

Conclusions

This study demonstrates that KRAS isoforms are highly heterogeneous in terms of concurrent genomic alterations and gene-expression profiles, and that stratification based on KRAS alleles should be considered in the design of future clinical trials.

Purpose

Activating missense mutations of KRAS are the most frequent oncogenic driver events in lung adenocarcinoma (LUAD). However, KRAS isoforms are highly heterogeneous, and data on the potential isoform-dependent therapeutic vulnerabilities are still lacking. Experimental design: We developed an isogenic cell-based platform to compare the oncogenic properties and specific therapeutic actionability of KRAS-mutant isoforms. In parallel, we analyzed clinicopathologic and genomic data from 3,560 patients with non-small cell lung cancer (NSCLC) to survey allele-specific features associated with oncogenic KRAS mutations.

Results

In isogenic cell lines expressing different mutant KRAS isoforms, we identified isoform-specific biochemical, biological, and oncogenic properties both in vitro and in vivo. These exclusive features correlated with different therapeutic responses to MEK inhibitors, with KRAS G12C and Q61H mutants being more sensitive compared with other isoforms. In vivo, combined KRAS G12C and MEK inhibition was more effective than either drug alone. Among patients with NSCLCs that underwent comprehensive tumor genomic profiling, STK11 and ATM mutations were significantly enriched among tumors harboring KRAS G12C, G12A, and G12V mutations. KEAP1 mutation was significantly enriched among KRAS G12C and KRAS G13X LUADs. KRAS G13X-mutated tumors had the highest frequency of concurrent STK11 and KEAP1 mutations. Transcriptomic profiling revealed unique patterns of gene expression in each KRAS isoform, compared with KRAS wild-type tumors. Conclusions: This study demonstrates that KRAS isoforms are highly heterogeneous in terms of concurrent genomic alterations and gene-expression profiles, and that stratification based on KRAS alleles should be considered in the design of future clinical trials.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。