Exploring the impact of Joule heating and Brownian motion on assisting and opposing flows in Eyring-Prandtl fluid

探索焦耳加热和布朗运动对艾林-普朗特流体中辅助流和反向流的影响

阅读:8
作者:E N Maraj, Harsa Afaq, Ehtsham Azhar, Muhammad Jamal, Haitham A Mahmoud

Significance

The increasing potential of Eyring-Prandtl fluid lies in its applications in heat and mass transfer. The current analysis holds significant promise, particularly in scenarios where non-Newtonian working fluids are utilized. This research aids in optimizing industrial processes, designing of efficient cooling systems in electronic devices, and in polymer and food processing. Methodology: The similarity transformations are utilized to turn a set of partial differential equations (PDEs) into a system of ordinary differential equation (ODE). The resulting system is modified and effectively solved by mean of numerical method known as the Runge Kutta method with bvp4c in MATLAB. Outcomes: Graphical results show the behavior of several physical parameters across boundary layers of buoyancy assisting and buoyancy opposing region. The magnetic field enhances the thermal conductance of the fluid flow that give rise to flow rate at the surface as well as within the boundary layers. The existing outcomes in the study are attained as a special case of current study. Eyring-Prandtl fluids, with their unique rheological properties can improve the design and efficiency of microfluidic systems used in various applications such as chemical synthesis, drug delivery, and biomedical diagnostics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。