Early metabolic changes in the brain of Alzheimer's disease rats are driven by GLAST+ cells

阿尔茨海默病大鼠大脑的早期代谢变化是由 GLAST+ 细胞驱动的

阅读:24
作者:William J Morrey, Kelly Ceyzériat, Quentin Amossé, Aurélien M Badina, Ben Dickie, Ingo Schiessl, Stergios Tsartsalis, Philippe Millet, Hervé Boutin, Benjamin B Tournier

Abstract

Glucose metabolic dysfunction is a hallmark of Alzheimer's disease (AD) pathology and is used to diagnose the disease or predict imminent cognitive decline. The main method to measure brain metabolism in vivo is positron emission tomography with 2-Deoxy-2-[18F]fluoroglucose ([18F]FDG-PET). The cellular origin of changes in the [18F]FDG-PET signal in AD is controversial. We addressed this by combining [18F]FDG-PET with subsequent cell-sorting and γ-counting of [18F]FDG-accumulation in sorted cell populations. 7-month-old male TgF344-AD rats and wild-type controls (n = 24/group) received sham or ceftriaxone (200 mg/kg) injection prior to [18F]FDG-PET imaging to increase glutamate uptake and glucose utilisation. The same animals were injected again one week later, and radiolabelled brains were dissected, with hippocampi taken for magnetically-activated cell sorting of radioligand-treated tissues (MACS-RTT). Radioactivity in sorted cell populations was measured to quantify cell-specific [18F]FDG uptake. Transcriptional analyses of metabolic enzymes/transporters were also performed. Hypometabolism in the frontal association cortex of TgF344-AD rats was identified using [18F]FDG-PET, whereas hypermetabolism was identified in the hippocampus using MACS-RTT. Hypermetabolism was primarily driven by GLAST+ cells. This was supported by transcriptional analyses which showed alteration to metabolic apparatus, including upregulation of hexokinase 2 and altered expression of glucose/lactate transporters. See Figure 1 for summary.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。