Rare Variants in RPPH1 Real-Time Quantitative PCR Control Assay Binding Sites Result in Incorrect Copy Number Calls

RPPH1 实时定量 PCR 对照检测结合位点中的稀有变异导致拷贝数调用错误

阅读:2
作者:Robert J Sicko, Paul A Romitti, Marilyn L Browne, Lawrence C Brody, Colleen F Stevens, James L Mills, Michele Caggana, Denise M Kay

Abstract

Real-time quantitative PCR (qPCR) using RPPH1 as a reference gene is a standard method for assessment and validation of genomic copy number variations. However, variants in the reference amplicon may cause errors, which was investigated herein. While conducting copy number variation validations for birth defects research studies, 13 of 1634 specimens with multiple loci that appeared to be present as three copies were unexpectedly detected. This apparent trisomy was hypothesized to be an amplification artifact caused by a variant in the RPPH1 amplicon. Sequencing revealed all 13 individuals carried one of the four different variants within the RPPH1 amplicon. These variants could produce allelic dropout or altered reaction efficiency, causing an inaccurate measurement of copy number. Additional genotyping predicted a low frequency of the most common variant (rs3093876; 14/3562 alleles; minor allele frequency, 0.39%). Laboratories should recognize the potential for inaccurate results when using a single qPCR control assay. Overestimated CFTR and SMN2 copy numbers identified during newborn screening that otherwise would have been incorrectly called were also detected. Variants in reference loci may produce false-negative normal results for test loci when real deletions are present. For clinical laboratories screening for heterozygous deletions for diagnostic testing or prenatal/carrier screening via qPCR, the most cost-effective solution to maximize sensitivity is to run triplex reactions targeting the region of interest with two control genes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。