Cell type-specific network analysis in Diversity Outbred mice identifies genes potentially responsible for human bone mineral density GWAS associations

多样性杂交小鼠中的细胞类型特异性网络分析确定了可能与人类骨矿物质密度 GWAS 关联有关的基因

阅读:2
作者:Luke J Dillard, Gina M Calabrese, Larry D Mesner, Charles R Farber

Abstract

Genome-wide association studies (GWASs) have identified many sources of genetic variation associated with bone mineral density (BMD), a clinical predictor of fracture risk and osteoporosis. Aside from the identification of causal genes, other difficult challenges to informing GWAS include characterizing the roles of predicted causal genes in disease and providing additional functional context, such as the cell type predictions or biological pathways in which causal genes operate. Leveraging single-cell transcriptomics (scRNA-seq) can assist in informing BMD GWAS by linking disease-associated variants to genes and providing a cell type context for which these causal genes drive disease. Here, we use large-scale scRNA-seq data from bone marrow-derived stromal cells cultured under osteogenic conditions (BMSC-OBs) from Diversity Outbred (DO) mice to generate cell type-specific networks and contextualize BMD GWAS-implicated genes. Using trajectories inferred from the scRNA-seq data, we identify networks enriched with genes that exhibit the most dynamic changes in expression across trajectories. We discover 21 network driver genes, which are likely to be causal for human BMD GWAS associations that colocalize with expression/splicing quantitative trait loci (eQTL/sQTL). These driver genes, including Fgfrl1 and Tpx2, along with their associated networks, are predicted to be novel regulators of BMD via their roles in the differentiation of mesenchymal lineage cells. In this work, we showcase the use of single-cell transcriptomics from mouse bone-relevant cells to inform human BMD GWAS and prioritize genetic targets with potential causal roles in the development of osteoporosis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。