Abstract
Accumulation of evidence highlighted the crosstalk between DNA damage repair and the immune system. Herein, we tested the hypothesis that in head and neck squamous cell carcinoma (HNSCC), the DNA repair capacity of patients' PBMCs correlates with therapeutic response to immune checkpoint blockade. Following in vitro UVC irradiation, oxidative stress, apurinic/apyrimidinic (AP) lesions, endogenous/baseline DNA damage, and DNA damage repair efficiency were evaluated in three HNSCC (UM-SCC-11A, Cal-33, BB49) and two normal cell lines (RPMI-1788, 1BR-3h-T), as well as in peripheral blood mononuclear cells (PBMCs) from 15 healthy controls (HC) and 49 recurrent/metastatic HNSCC patients at baseline (8 responders, 41 non-responders to subsequent nivolumab therapy). HNSCC cell lines showed lower DNA repair efficiency, increased oxidative stress, and higher AP sites than normal ones (all p < 0.001). Moreover, patients' PBMCs exhibited increased endogenous/baseline DNA damage, decreased DNA repair capacity, augmented oxidative stress, and higher AP sites than PBMCs from HC (all p < 0.001). Importantly, PBMCs from responders to nivolumab therapy showed lower endogenous/baseline DNA damage, higher DNA repair capacities, decreased oxidative stress, and reduced AP sites than non-responders (all p < 0.05). Together, we demonstrated that oxidative stress status and DNA repair efficiency in PBMCs from HNSCC patients are correlated with the response to immune checkpoint blockade.