In vivo antitumor activity of PHT-427 inhibitor-loaded polymeric nanoparticles in head and neck squamous cell carcinoma

PHT-427 抑制剂负载聚合物纳米粒子对头颈部鳞状细胞癌的体内抗肿瘤活性

阅读:9
作者:Joaquín Yanes-Díaz, Raquel Palao-Suay, Francisca Inmaculada Camacho-Castañeda, Juan Riestra-Ayora, María Rosa Aguilar, Ricardo Sanz-Fernández, Carolina Sánchez-Rodríguez

Abstract

Recent studies on head and neck squamous cell carcinoma (HNSCC) tumorigenesis have revealed several dysregulated molecular pathways. The phosphatidylinositol-3-kinase (PI3K) signaling pathway is frequently activated in HNSCC, making it an attractive target for therapies. PHT-427 is a dual inhibitor of PI3K and the mammalian target of AKT/PDK1. This study evaluates the anticancer efficacy of the inhibitor PHT-427 loaded into polymeric nanoparticles (NP) based on α-TOS (NP-427) administered by intratumoral injection into a hypopharyngeal squamous cell carcinoma (FaDu cells) heterotopic xenograft mouse model. The nanocarrier system, based on block copolymers of N-vinylpyrrolidone (VP) and a methacrylic derivative of α-TOS (MTOS), was synthesized, and PHT-427 was loaded into the delivery system. First, we evaluated the effect of NP-427 on tumor growth by measuring tumor volume, mouse weight, survival, and the development of tumor ulceration and necrosis. In addition, we measured PI3KCA/AKT/PDK1 gene expression, PI3KCA/AKT/PDK1 protein levels, Epidermal Growth Factor Receptor (EGFR), and angiogenesis in the tumor tissue. PHT-427 encapsulation increased drug efficacy and safety, as demonstrated by decreased tumor volume, reduced PI3K/AKT/PDK1 pathway expression, and improved antitumor activity and necrosis induction in the mouse xenograft model. EGFR and angiogenesis marker (Factor VIII) expression were significantly lower in the NP-427 group compared to other experimental groups. Administration of encapsulated PHT-427 at the tumor sites proves promising for HNSCC therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。